• Home
  • Research
    • Design of Energy Conversion Ma...
    • Development of in situ Surface...
    • Expansion of Synchrotron Radia...
    • Hot Papers
  • Publication
    • 2021-2025
    • 2016-2020
    • 2010-2015
    • 2009 and Before
  • Facilities
  • Members
    • Principal Investigator
    • Postdoctoral Fellows
    • Ph.D. Students
    • M.S. Students
    • Graduated Students
  • Join us

Congratulations to Meihuan Liu and Jing Zhang for their paper about In situ modulating coordination fields of single-atom cobalt catalyst for enhanced oxygen reduction reaction published on Nature Communications

发布者:张宇浩发布时间:2024-01-25动态浏览次数:10

Single-atom catalysts, especially those with metal−N4 moieties, hold great promise for facilitating the oxygen reduction reaction. However, the symmetrical distribution of electrons within the metal−N4 moiety results in unsatisfactory adsorption strength of intermediates, thereby limiting their performance improvements. Herein, we present atomically coordination-regulated Co single-atom catalysts that comprise a symmetry-broken Cl−Co−N4 moiety, which serves to break the symmetrical electron distribution. In situ characterizations reveal the dynamic evolution of the symmetry-broken Cl−Co−N4 moiety into a coordination-reduced Cl−Co−N2 structure, effectively optimizing the 3d electron filling of Co sites toward a reduced d-band electron occupancy (d5.8 → d5.28) under reaction conditions for a fast four-electron oxygen reduction reaction process. As a result, the coordination-regulated Co single-atom catalysts deliver a large half-potential of 0.93 V and a mass activity of 5480 A gmetal−1. Importantly, a Zn-air battery using the coordination-regulated Co single-atom catalysts as the cathode also exhibits a large power density and excellent stability.

地址:No.42, Hezuo South Road Shushan District, Hefei, Anhui, 230029, P.R.China. 电话:0551-63602117Email:qhliu@ustc.edu.cn

Copright © 2020 lxafs.ustc.edu.cn All Right Reserved. 版权所有 中国科学技术大学能源转换与原位表征实验室制作维护